Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.531
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731941

RESUMO

Micro- and nanoplastic particles, including common forms like polyethylene and polystyrene, have been identified as relevant pollutants, potentially causing health problems in living organisms. The mechanisms at the cellular level largely remain to be elucidated. This study aims to visualize nanoplastics in bronchial smooth muscle (BSMC) and small airway epithelial cells (SAEC), and to assess the impact on mitochondrial metabolism. Healthy and asthmatic human BSMC and SAEC in vitro cultures were stimulated with polystyrene nanoplastics (PS-NPs) of 25 or 50 nm size, for 1 or 24 h. Live cell, label-free imaging by holotomography microscopy and mitochondrial respiration and glycolysis assessment were performed. Furthermore, 25 and 50 nm NPs were shown to penetrate SAEC, along with healthy and diseased BSMC, and they impaired bioenergetics and induce mitochondrial dysfunction compared to cells not treated with NPs, including changes in oxygen consumption rate and extracellular acidification rate. NPs pose a serious threat to human health by penetrating airway tissues and cells, and affecting both oxidative and glycolytic metabolism.


Assuntos
Brônquios , Células Epiteliais , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/citologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Nanopartículas , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Células Cultivadas , Poliestirenos , Asma/metabolismo , Asma/patologia , Músculo Liso/metabolismo , Microplásticos/toxicidade , Consumo de Oxigênio/efeitos dos fármacos
2.
Environ Geochem Health ; 46(6): 185, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695908

RESUMO

Microplastics (MPs), as emerging contaminants, usually experience aging processes in natural environments and further affect their interactions with coexisted contaminants, resulting in unpredictable ecological risks. Herein, the effect of MPs aging on their adsorption for coexisting antibiotics and their joint biotoxicity have been investigated. Results showed that the adsorption capacity of aged polystyrene (PS, 100 d and 50 d) for ciprofloxacin (CIP) was 1.10-4.09 times higher than virgin PS due to the larger BET surface area and increased oxygen-containing functional groups of aged PS. Following the increased adsorption capacity of aged PS, the joint toxicity of aged PS and CIP to Shewanella Oneidensis MR-1 (MR-1) was 1.03-1.34 times higher than virgin PS and CIP. Combined with the adsorption process, CIP posed higher toxicity to MR-1 compared to aged PS due to the rapid adsorption of aged PS for CIP in the first 12 h. After that, the adsorption process tended to be gentle and hence the joint toxicity to MR-1 was gradually dominated by aged PS. A similar transformation between the adsorption rate and the joint toxicity of PS and CIP was observed under different conditions. This study supplied a novel perception of the synergistic effects of PS aging and CIP on ecological health.


Assuntos
Ciprofloxacina , Poliestirenos , Shewanella , Ciprofloxacina/química , Ciprofloxacina/toxicidade , Poliestirenos/toxicidade , Poliestirenos/química , Adsorção , Shewanella/efeitos dos fármacos , Microplásticos/toxicidade , Microplásticos/química , Antibacterianos/química , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
3.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732183

RESUMO

The impact of microplastics (MPs) on the metabolic functions of the liver is currently unclear and not completely understood. To investigate the effects of the administration of MPs on the hepatic metabolism of normal and obese mice, alterations in the lipid, glucose (Glu), and amino acid regulation pathways were analyzed in the liver and adipose tissues of C57BL/6Korl (wild type, WT) or C57BL/6-Lepem1hwl/Korl mice (leptin knockout, Lep KO) orally administered polystyrene (PS) MPs for 9 weeks. Significant alterations in the lipid accumulation, adipogenesis, lipogenesis, and lipolysis pathways were detected in the liver tissue of MP-treated WT and Lep KO mice compared to the vehicle-treated group. These alterations in their liver tissues were accompanied by an upregulation of the serum lipid profile, as well as alterations in the adipogenesis, lipogenesis, and lipolysis pathways in the adipose tissues of MP-treated WT and Lep KO mice. Specifically, the level of leptin was increased in the adipose tissues of MP-treated WT mice without any change in their food intake. Also, MP-induced disruptions in the glycogenolysis, Glu transporter type 4 (GLUT4)-5' AMP-activated protein kinase (AMPK) signaling pathway, levels of lipid intermediates, and the insulin resistance of the liver tissues of WT and Lep KO mice were observed. Furthermore, the levels of seven endogenous metabolites were remarkably changed in the serum of WT and Lep KO mice after MP administrations. Finally, the impact of the MP administration observed in both types of mice was further verified in differentiated 3T3-L1 adipocytes and HepG2 cells. Thus, these results suggest that the oral administration of MPs for 9 weeks may be associated with the disruption of lipid, Glu, and amino acid metabolism in the liver tissue of obese WT and Lep KO mice.


Assuntos
Aminoácidos , Glucose , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microplásticos , Poliestirenos , Animais , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Glucose/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Aminoácidos/metabolismo , Administração Oral , Leptina/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Masculino , Lipogênese/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/etiologia , Obesidade/genética , Humanos , Lipólise/efeitos dos fármacos
4.
J Hazard Mater ; 471: 134253, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38642497

RESUMO

Micro- and nanoplastics (MNPs) are ubiquitous in the environment, resulting in the uptake of MNPs by a variety of organisms, including humans, leading to particle-cell interaction. Human macrophages derived from THP-1 cell lines take up Polystyrene (PS), a widespread plastic. The question therefore arises whether primary human macrophages also take up PS micro- and nanobeads (MNBs) and how they react to this stimulation. Major aim of this study is to visualize this uptake and to validate the isolation of macrophages from peripheral blood mononuclear cells (PBMCs) to assess the impact of MNPs on human macrophages. Uptake of macrophages from THP-1 cell lines and PBMCs was examined by transmission electron microscopy (TEM), scanning electron microscopy and live cell imaging. In addition, the reaction of the macrophages was analyzed in terms of metabolic activity, cytotoxicity, production of reactive oxygen species (ROS) and macrophage polarization. This study is the first to visualize PS MNBs in primary human cells using TEM and live cell imaging. Metabolic activity was size- and concentration-dependent, necrosis and ROS were increased. The methods demonstrated in this study outline an approach to assess the influence of MNP exposure on human macrophages and help investigating the consequences of worldwide plastic pollution.


Assuntos
Macrófagos , Microplásticos , Poliestirenos , Espécies Reativas de Oxigênio , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poliestirenos/química , Poliestirenos/toxicidade , Células THP-1 , Microplásticos/toxicidade , Leucócitos Mononucleares/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
5.
Int J Biol Macromol ; 267(Pt 2): 131564, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614174

RESUMO

Contaminating microplastics can interact with food proteins in the food matrix and during digestion. This study investigated adsorption of chicken egg protein ovalbumin to polystyrene (PS, 110 and 260 µm) and polyethylene terephthalate (PET, 140 µm) MPs in acidic and neutral conditions and alterations in ovalbumin structure. Ovalbumin adsorption affinity depended on MPs size (smaller > larger), type (PS > PET) and pH (pH 3 > pH 7). In bulk solution, MPs does not change ovalbumin secondary structure significantly, but induces loosening (at pH 3) and tightening (at pH 7) of tertiary structure. Formed soft corona exclusively consists of full length non-native ovalbumin, while in hard corona also shorter ovalbumin fragments were found. At pH 7 soft corona ovalbumin has rearranged but still preserved level of ordered secondary structure, resulting in preserved thermostability and proteolytic stability, but decreased ability to form fibrils upon heating. Secondary structure changes in soft corona resemble changes in native ovalbumin induced by heat treatment (80 °C). Ovalbumin is abundantly present in corona around microplastics also in the presence of other egg white proteins. These results imply that microplastics contaminating food may bind and change structure and functional properties of the main egg white protein.


Assuntos
Microplásticos , Ovalbumina , Polietilenotereftalatos , Poliestirenos , Ovalbumina/química , Poliestirenos/química , Microplásticos/química , Polietilenotereftalatos/química , Concentração de Íons de Hidrogênio , Adsorção , Animais , Galinhas , Estrutura Secundária de Proteína
6.
Sci Total Environ ; 929: 172470, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621530

RESUMO

Microplastics (MP) have become a well-known and widely investigated environmental pollutant. Despite the huge amount of new studies investigating the potential threat posed by MP, the possible uptake and trophic transfer in lower trophic levels of freshwater ecosystems remains understudied. This study aims to investigate the internalization and potential trophic transfer of fluorescent polystyrene (PS) beads (0.5 µm, 3.6 × 108 particles/mL; 6 µm, 2.1 × 105 particles/mL) and fragments (<30 µm, 5 × 103 particles/mL) in three unicellular eukaryotes. This study focuses on the size-dependent uptake of MP by two freshwater Ciliophora, Tetrahymena pyriformis, Paramecium caudatum and one Amoebozoa, Amoeba proteus, serving also as predator for experiments on potential trophic transfer. Size-dependent uptake of MP in all three unicellular eukaryotes was shown. P. caudatum is able to take up MP fragments up to 27.7 µm, while T. pyriformis ingests particles up to 10 µm. In A. proteus, small MP (PS0.5µm and PS6µm) were taken up via pinocytosis and were detected in the cytoplasm for up to 14 days after exposure. Large PS-MP (PS<30µm) were detected in A. proteus only after predation on MP-fed Ciliophora. These results indicate that A. proteus ingests larger MP via predation on Ciliophora (PS<30µm), which would not be taken up otherwise. This study shows trophic transfer of MP at the base of the aquatic food web and serves as basis to study the impact of MP in freshwater ecosystems.


Assuntos
Cadeia Alimentar , Água Doce , Microplásticos , Poliestirenos , Poluentes Químicos da Água , Poluentes Químicos da Água/metabolismo , Monitoramento Ambiental , Tetrahymena pyriformis/metabolismo , Amoeba/metabolismo , Paramecium caudatum/metabolismo , Tamanho da Partícula
7.
Sci Total Environ ; 927: 172243, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582118

RESUMO

Globally, over 287 million tons of plastic are disposed in landfills, rivers, and oceans or are burned every year. The results are devastating to our ecosystems, wildlife and human health. One promising remedy is the yellow mealworm (Tenebrio molitor larvae), which has proved capable of degrading microplastics (MPs). This paper presents a new investigation into the biodegradation of aged polyethylene (PE) film and polystyrene (PS) foam by the Tenebrio molitor larvae. After a 35 - day feeding period, both pristine and aged MPs can be consumed by larvae. Even with some inhibitions in larvae growth due to the limited nutrient supply of aged MPs, when compared with pristine MPs, the aged MPs were depolymerized more efficiently in gut microbiota based on gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) analysis. With the change in surface chemical properties, the metabolic intermediates of aged MPs contained more oxygen-containing functional groups and shortened long-chain alkane, which was confirmed by gas chromatography and mass spectrometry (GC-MS). High-throughput sequencing revealed that the richness and diversity of gut microbes were restricted in the MPs-fed group. Although MPs had a negative effect on the relative abundance of the two dominant bacteria Enterococcaceae and Lactobacillaceae, the aged MPs may promote the relative abundance of Enterobacteriaceae and Streptococcaceae. Redundancy analysis (RDA) further verified that the aged MPs are effectively biodegraded by yellow mealworm. This work provides new insights into insect-mediated mechanisms of aged MP degradation and promising strategies for MP sustainable and efficient solutions.


Assuntos
Biodegradação Ambiental , Larva , Microplásticos , Polietileno , Poliestirenos , Tenebrio , Animais , Microplásticos/metabolismo , Tenebrio/metabolismo , Polietileno/metabolismo , Microbioma Gastrointestinal , Poluentes Químicos da Água/metabolismo
8.
J Zhejiang Univ Sci B ; 25(4): 307-323, 2024 Apr 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38584093

RESUMO

Microplastics (MPs) and nanoplastics (NPs) have become hazardous materials due to the massive amount of plastic waste and disposable masks, but their specific health effects remain uncertain. In this study, fluorescence-labeled polystyrene NPs (PS-NPs) were injected into the circulatory systems of mice to determine the distribution and potential toxic effects of NPs in vivo. Interestingly, whole-body imaging found that PS-NPs accumulated in the testes of mice. Therefore, the toxic effects of PS-NPs on the reproduction systems and the spermatocytes cell line of male mice, and their mechanisms, were investigated. After oral exposure to PS-NPs, their spermatogenesis was affected and the spermatogenic cells were damaged. The spermatocyte cell line GC-2 was exposed to PS-NPs and analyzed using RNA sequencing (RNA-seq) to determine the toxic mechanisms; a ferroptosis pathway was found after PS-NP exposure. The phenomena and indicators of ferroptosis were then determined and verified by ferroptosis inhibitor ferrostatin-1 (Fer-1), and it was also found that nuclear factor erythroid 2-related factor 2 (Nrf2) played an important role in spermatogenic cell ferroptosis induced by PS-NPs. Finally, it was confirmed in vivo that this mechanism of Nrf2 played a protective role in PS-NPs-induced male reproductive toxicity. This study demonstrated that PS-NPs induce male reproductive dysfunction in mice by causing spermatogenic cell ferroptosis dependent on Nrf2.


Assuntos
Ferroptose , Nanopartículas , Poluentes Químicos da Água , Animais , Masculino , Camundongos , Microplásticos , Fator 2 Relacionado a NF-E2 , Plásticos/toxicidade , Poliestirenos/toxicidade , Reprodução
9.
Zhongguo Zhong Yao Za Zhi ; 49(3): 644-652, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621868

RESUMO

This study aims to optimize the matrix formulation for the hot-melt pressure-sensitive adhesive plaster of personalized traditional Chinese medicine(TCM) preparations and verify the applicability of the formulation. The central composite design in JMP Pro 16.1.0 was employed to optimize the dosages of styrene-isoprene-styrene triblock copolymer(SIS), hydrogenated petroleum resin, and lightweight liquid paraffin, with the fine powder of Yipifang as the model drug(drug loading of 10%) and the sensory score and objective evaluation as the comprehensive evaluation indicators. The quality evaluation system of hot-melt pressure-sensitive adhesive plaster of personalized TCM preparations was established. The applicability of the optimized matrix formulation of hot-melt pressure-sensitive adhesive plaster was verified with 16 TCM preparations for external application. Furthermore, the applicability of the matrix formulation was investigated with different drug loadings. The general molding matrix formulation was SIS∶hydrogenated petroleum resin∶lightweight liquid paraffin 3∶3∶5. The optimized matrix formulation showed good molding properties and high quality scores for 16 TCM preparations and were suitable for the plastering of finely powdered decoction pieces with a loading capacity of 10% to 30%. The results suggest that the optimized matrix formulation has good applicability and is suitable for TCM preparations. The findings lay a foundation for the application and promotion of the hot-melt pressure-sensitive adhesive plasters of personalized TCM preparations.


Assuntos
Medicamentos de Ervas Chinesas , Petróleo , Medicina Tradicional Chinesa , Óleo Mineral , Poliestirenos
10.
J Hazard Mater ; 470: 134175, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574662

RESUMO

Emerging organic photoelectrochemical transistors (OPECTs) with inherent amplification capabilities, good biocompatibility and even self-powered operation have emerged as a promising detection tool, however, they are still not widely studied for pollutant detection. In this paper, a novel OPECT dual-mode aptasensor was constructed for the ultrasensitive detection of di(2-ethylhexyl) phthalate (DEHP). MXene/In2S3/In2O3 Z-scheme heterojunction was used as a light fuel for ion modulation in sensitive gated OPECT biosensing. A transistor system based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) converted biological events associated with photosensitive gate achieving nearly a thousand-fold higher current gain at zero bias voltage. This work quantified the target DEHP by aptamer-specific induction of CRISPR-Cas13a trans-cutting activity with target-dependent rolling circle amplification as the signal amplification unit, and incorporated the signal changes strategy of biocatalytic precipitation and TMB color development. Combining OPECT with the auxiliary validation of colorimetry (CM), high sensitivity and accurate detection of DEHP were achieved with a linear range of 0.1 pM to 200 pM and a minimum detection limit of 0.02 pM. This study not only provides a new method for the detection of DEHP, but also offers a promising prospect for the gating and application of the unique OPECT.


Assuntos
Técnicas Biossensoriais , Dietilexilftalato , Técnicas Eletroquímicas , Transistores Eletrônicos , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Sistemas CRISPR-Cas , Dietilexilftalato/química , Dietilexilftalato/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico , Poliestirenos/química , Tiofenos , Poluentes Químicos da Água/análise
11.
Ecotoxicol Environ Saf ; 277: 116331, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640801

RESUMO

Polystyrene nanoparticles are emerging as contaminants in freshwater environments, posing potential risks to amphibians exposed to extended periods of water contamination. Using tadpoles as a model, this study aimed to evaluate the toxicity of PS NPs. Pyrolysis-gas chromatography-tandem mass spectrometry (Py-GCMS) analysis revealed a concentration-dependent increase in polystyrene nanoparticles (PS NPs) levels in tadpoles with escalating exposure concentrations. Following exposure to 100 nm fluorescent microspheres, fluorescence was observed in the intestines and gills, peaking at 48 hours. Histopathological analysis identified degenerative necrosis and inflammation in the liver, along with atrophic necrosis of glomeruli and tubules in the kidneys. These results indicate a discernible impact of PS NPs on antioxidant levels, including reduced superoxide dismutase and catalase activities, elevated glutathione content, and increased malondialdehyde levels. Electron microscopy observations revealed the infiltration of PS NPs into Kupffer's cells and hepatocytes, leading to visible lesions such as nuclear condensation and mitochondrial disruption. The primary objective of this research was to elucidate the adverse effects of prolonged PS NPs exposure on amphibians.


Assuntos
Larva , Fígado , Nanopartículas , Estresse Oxidativo , Poliestirenos , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Poluentes Químicos da Água/toxicidade , Larva/efeitos dos fármacos , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Malondialdeído/metabolismo , Catalase/metabolismo
12.
ACS Nano ; 18(18): 11828-11836, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659192

RESUMO

As essential primary producers, cyanobacteria play a major role in global carbon and nitrogen cycles. Though the influence of nanoplastics on the carbon metabolism of cyanobacteria is well-studied, little is known about how nanoplastics affect their nitrogen metabolism, especially under environmentally relevant nitrogen concentrations. Here, we show that nitrogen forms regulated growth inhibition, nitrogen consumption, and the synthesis and release of microcystin (MC) in Microcystis aeruginosa exposed to 10 µg/mL amino-modified polystyrene nanoplastics (PS-NH2) with a particle size of 50 nm under environmentally relevant nitrogen concentrations of nitrate, ammonium, and urea. We demonstrate that PS-NH2 inhibit M. aeruginosa differently in nitrate, urea, and ammonium, with inhibition rates of 51.87, 39.70, and 36.69%, respectively. It is caused through the differences in impairing cell membrane integrity, disrupting redox homeostasis, and varying nitrogen transport pathways under different nitrogen forms. M. aeruginosa respond to exposure of PS-NH2 by utilizing additional nitrogen to boost the production of amino acids, thereby enhancing the synthesis of MC, extracellular polymeric substances, and membrane phospholipids. Our results found that the threat of nanoplastics on primary producers can be regulated by the nitrogen forms in freshwater ecosystems, contributing to a better understanding of nanoplastic risks under environmentally relevant conditions.


Assuntos
Microcystis , Nitrogênio , Microcystis/efeitos dos fármacos , Microcystis/metabolismo , Microcystis/crescimento & desenvolvimento , Nitrogênio/química , Nitrogênio/metabolismo , Microcistinas/metabolismo , Poliestirenos/química , Tamanho da Partícula , Microplásticos/metabolismo , Nanopartículas/química , Nitratos/metabolismo , Nitratos/química , Ureia/metabolismo , Ureia/química , Ureia/farmacologia
13.
Part Fibre Toxicol ; 21(1): 20, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610056

RESUMO

BACKGROUND: The global use of plastic materials has undergone rapid expansion, resulting in the substantial generation of degraded and synthetic microplastics and nanoplastics (MNPs), which have the potential to impose significant environmental burdens and cause harmful effects on living organisms. Despite this, the detrimental impacts of MNPs exposure towards host cells and tissues have not been thoroughly characterized. RESULTS: In the present study, we have elucidated a previously unidentified hepatotoxic effect of 20 nm synthetic polystyrene nanoparticles (PSNPs), rather than larger PS beads, by selectively inducing necroptosis in macrophages. Mechanistically, 20 nm PSNPs were rapidly internalized by macrophages and accumulated in the mitochondria, where they disrupted mitochondrial integrity, leading to heightened production of mitochondrial reactive oxygen species (mtROS). This elevated mtROS generation essentially triggered necroptosis in macrophages, resulting in enhanced crosstalk with hepatocytes, ultimately leading to hepatocyte damage. Additionally, it was demonstrated that PSNPs induced necroptosis and promoted acute liver injury in mice. This harmful effect was significantly mitigated by the administration of a necroptosis inhibitor or systemic depletion of macrophages prior to PSNPs injection. CONCLUSION: Collectively, our study suggests a profound toxicity of environmental PSNP exposure by triggering macrophage necroptosis, which in turn induces hepatotoxicity via intercellular crosstalk between macrophages and hepatocytes in the hepatic microenvironment.


Assuntos
Nanopartículas , Poliestirenos , Animais , Camundongos , Poliestirenos/toxicidade , Espécies Reativas de Oxigênio , Necroptose , Plásticos , Hepatócitos , Macrófagos , Mitocôndrias , Nanopartículas/toxicidade , Fígado
15.
Int J Pharm ; 656: 124097, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609058

RESUMO

The size and concentration are critical for the diagnostic and therapeutic applications of nanomaterials but the accurate measurement remains challenging. Nanoparticle tracking analysis (NTA) is widely used for size and concentration determination. However, highly repeatable standard operating procedures (SOPs) are absent. We adopted the "search-evaluate-test" strategy to standardize the measurement by searching the critical parameters. The particles per frame are linearly proportional to the sample concentration and the measured results are more accurate and repeatable when the concentration is 108-109 particles/ml. The optimal detection threshold is around 5. The optimal camera level is such that it allows clear observation of particles without diffractive rings and overexposure. The optimal speed is ≤ 50 in AU and âˆ¼ 10 µl/min in flow rate. We then evaluated the protocol using polydisperse polystyrene particles and we found that NTA could discriminate particles in bimodal mixtures with high size resolution but the performance on multimodal mixtures is not as good as that of resistive pulse sensing (RPS). We further analyzed the polystyrene particles, SiO2 particles, and biological samples by NTA following the SOPs. The size and concentration measured by NTA differentially varies to those determined by RPS and transmission electron microscopy.


Assuntos
Nanopartículas , Tamanho da Partícula , Poliestirenos , Dióxido de Silício , Nanopartículas/química , Nanopartículas/análise , Poliestirenos/química , Dióxido de Silício/química , Ouro/química , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Animais
16.
BMC Vet Res ; 20(1): 143, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622626

RESUMO

Polystyrene nanoplastic (PS-NPs) and Engine oil (EO) pose multiple ecotoxic effects with increasing threat to fish ecosystems. The current study investigated the toxicity of 15 days exposure to PS-NPs and / or EO to explore their combined synergistic effects on Nile tilapia, Oreochromis niloticus (O. niloticus). Hematobiochemical parameters, proinflammatory cytokines, and oxidative stress biomarkers as well as histological alterations were evaluated. The experimental design contained 120 acclimated Nile tilapia distributed into four groups, control, PS-NPs (5 mg/L), EO (1%) and their combination (PS-NPs + EO). After 15-days of exposure, blood and tissue samples were collected from all fish experimental groups. Results indicated that Nile tilapia exposed to PS-NPs and / or EO revealed a significant decrease in almost all the measured hematological parameters in comparison to the control, whereas WBCs and lymphocyte counts were significantly increased in the combined group only. Results clarified that the combined PS-NPs + EO group showed the maximum decrease in RBCs, Hb, MCH and MCHC, and showed the maximum significant rise in interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in comparison to all other exposed groups. Meanwhile, total antioxidant capacity (TAC) showed a significant (p < 0.05) decline only in the combination group, whereas reduced glutathione (GSH) showed a significant decline in all exposed groups in comparison to the control. Both malondialdehyde (MDA) and aspartate aminotransferase (AST) showed a significant elevation only in the combination group. Uric acid showed the maximum elevation in the combination group than all other groups, whereas creatinine showed significant elevation in the EO and combination group when compared to the control. Furthermore, the present experiment proved that exposure to these toxicants either individually or in combination is accompanied by pronounced histomorpholgical damage characterized by severe necrosis and hemorrhage of the vital organs of Nile tilapia, additionally extensively inflammatory conditions with leucocytes infiltration. We concluded that combination exposure to both PS-NPs and EO caused severe anemia, extreme inflammatory response, oxidative stress, and lipid peroxidation effects, thus they can synergize with each other to intensify toxicity in fish.


Assuntos
Ciclídeos , Microplásticos , Animais , Microplásticos/metabolismo , Microplásticos/farmacologia , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Ecossistema , Fígado/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Interleucina-6/metabolismo
17.
J Hazard Mater ; 470: 134298, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626679

RESUMO

4-methylbenzylidene camphor (4-MBC) and micro/nanoplastics (MNPs) are common in personal care and cosmetic products (PCCPs) and consumer goods; however, they have become pervasive environmental contaminants. MNPs serve as carriers of 4-MBC in both PCCPs and the environment. Our previous study demonstrated that 4-MBC induces estrogenic effects in zebrafish larvae. However, knowledge gaps remain regarding the sex- and tissue-specific accumulation and potential toxicities of chronic coexposure to 4-MBC and MNPs. Herein, adult zebrafish were exposed to environmentally realistic concentrations of 4-MBC (0, 0.4832, and 4832 µg/L), with or without polystyrene nanoplastics (PS-NPs; 50 nm, 1.0 mg/L) for 21 days. Sex-specific accumulation was observed, with higher concentrations in female brains, while males exhibited comparable accumulation in the liver, testes, and brain. Coexposure to PS-NPs intensified the 4-MBC burden in all tested tissues. Dual-omics analysis (transcriptomics and proteomics) revealed dysfunctions in neuronal differentiation, death, and reproduction. 4-MBC-co-PS-NP exposure disrupted the brain histopathology more severely than exposure to 4-MBC alone, inducing sex-specific neurotoxicity and reproductive disruptions. Female zebrafish exhibited autism spectrum disorder-like behavior and disruption of vitellogenesis and oocyte maturation, while male zebrafish showed Parkinson's-like behavior and spermatogenesis disruption. Our findings highlight that PS-NPs enhance tissue accumulation of 4-MBC, leading to sex-specific impairments in the nervous and reproductive systems of zebrafish.


Assuntos
Cânfora , Cânfora/análogos & derivados , Peixe-Zebra , Animais , Masculino , Feminino , Cânfora/toxicidade , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Poliestirenos/toxicidade , Nanopartículas/toxicidade , Reprodução/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Compostos Benzidrílicos/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo
18.
Sci Total Environ ; 927: 172156, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588742

RESUMO

The variability and intrinsic mechanisms of oxidative stress induced by microplastics at different trophic levels in freshwater food chains are not well understood. To comprehensively assess the oxidative stress induced by polystyrene microplastics (PS-MPs) in freshwater food chains, the present study first quantified the oxidative stress induced by PS-MPs in organisms at different trophic levels using factorial experimental design and molecular dynamics methods. Then focuses on analyzing the variability of these responses across different trophic levels using mathematical statistical analysis. Notably, higher trophic level organisms exhibit diminished responses under PS-MPs exposure. Furthermore, the coexistence of multiple additives was found to mask these responses, with antioxidant plastic additives significantly influencing oxidative stress responses. Mechanism analysis using computational chemistry simulation determines that protein structure and amino acid characteristics are key factors driving PS-MPs induced oxidative stress variation in freshwater organisms at different nutrient levels. Increased hydrophobic additives induce protein helicalization and amino acid residue aggregation. This study systematically reveals the variability of biological oxidative stress response under different nutrient levels, emphasizing the pivotal role of chemical additives. Overall, this study offers crucial insights into PS-MPs' impact on oxidative stress responses in freshwater ecosystems, informing future environmental risk assessment.


Assuntos
Cadeia Alimentar , Água Doce , Microplásticos , Estresse Oxidativo , Poluentes Químicos da Água , Estresse Oxidativo/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Água Doce/química , Animais , Poliestirenos/toxicidade , Organismos Aquáticos/efeitos dos fármacos
19.
Environ Int ; 186: 108638, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593689

RESUMO

Microplastics (MPs) are pervasive pollutants in the natural environment and contribute to increased levels of illness in both animals and humans. However, thespecific impacts of MPs on skin damage and alopeciaare not yet well understood. In this study, we have examined the effects of two types of polystyrene MPs (pristine and aged) on skin and hair follicle damage in mice. UV irradiation changed the chemical and physical properties of the aged MPs, including functional groups, surface roughness, and contact angles. In both in vivo and in vitro experiments, skin and cell injuries related to oxidative stress, apoptosis, tight junctions (TJs), alopecia, mitochondrial dysfunction, and other damages were observed. Mechanistically, MPs and aged MPs can induce TJs damage via the oxidative stress pathway and inhibition of antioxidant-related proteins, and this can lead to alopecia. The regulation of cell apoptosis was also observed, and this is involved in the ROS-mediated mitochondrial signaling pathway. Importantly, aged MPs showed exacerbated toxicity, which may be due to their elevated surface irregularities and altered chemical compositions. Collectively, this study suggests a potential therapeutic approach for alopecia and hair follicle damage caused by MPs pollution.


Assuntos
Alopecia , Apoptose , Microplásticos , Estresse Oxidativo , Poliestirenos , Pele , Junções Íntimas , Alopecia/induzido quimicamente , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Camundongos , Poliestirenos/toxicidade , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Folículo Piloso/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
20.
Environ Health Perspect ; 132(4): 47005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598326

RESUMO

BACKGROUND: Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. OBJECTIVES: This study aims to investigate the impacts of polymer microspheres on tissue metabolism in mice by assessing the microspheres ability to translocate across the gut barrier and enter into systemic circulation. Specifically, we wanted to examine microsphere accumulation in different organ systems, identify concentration-dependent metabolic changes, and evaluate the effects of mixed microsphere exposures on health outcomes. METHODS: To investigate the impact of ingested microspheres on target metabolic pathways, mice were exposed to either polystyrene (5µm) microspheres or a mixture of polymer microspheres consisting of polystyrene (5µm), polyethylene (1-4µm), and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid) (5µm). Exposures were performed twice a week for 4 weeks at a concentration of either 0, 2, or 4mg/week via oral gastric gavage. Tissues were collected to examine microsphere ingress and changes in metabolites. RESULTS: In mice that ingested microspheres, we detected polystyrene microspheres in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolic differences that occurred in the colon, liver, and brain, which showed differential responses that were dependent on concentration and type of microsphere exposure. DISCUSSION: This study uses a mouse model to provide critical insight into the potential health implications of the pervasive issue of plastic pollution. These findings demonstrate that orally consumed polystyrene or mixed polymer microspheres can accumulate in tissues such as the brain, liver, and kidney. Furthermore, this study highlights concentration-dependent and polymer type-specific metabolic changes in the colon, liver, and brain after plastic microsphere exposure. These results underline the mobility within and between biological tissues of MPs after exposure and emphasize the importance of understanding their metabolic impact. https://doi.org/10.1289/EHP13435.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Humanos , Animais , Camundongos , Microesferas , Plásticos , Distribuição Tecidual , Microplásticos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...